Economy of Salt in Chloralkali Manufacture

Vladimir M. Sedivy MSc (Hons) Chem Eng, IMD

President

Salt Partners Ltd, Zurich, Switzerland

Salt production world-wide

Salt type	World production
Solar salt	90,000,000 t/y
Rock salt	60,000,000 t/y
Brines	80,000,000 t/y
Total	230,000,000 t/y

Salt consumption world-wide

Salt user	Salt consumption
Chemical industry	140,000,000 t/y
Food	50,000,000 t/y
Other	40,000,000 t/y

The Basic Chloralkali Equation Caustic and Chlorine from Salt

```
2 NaCl + 2 H_2O + Electrical Energy = 2 NaOH + Cl_2 + H_2
119 36 82 71 2
1.45 1 1
```

The Basic Chloralkali Equation Soda Ash from Salt and Lime

Impurities in salt

	Rock salt	Sea salt	Lake salt	Brines
CaSO4	0.5 – 2%	0.5 – 1%	0.5 – 2%	Saturated
MgSO4	Traces	0.2 - 0.6%	Traces	Traces
MgCl2		0.3 – 1%	Traces	
CaCl2			Traces	
Na2SO4			Traces	
KCI			Traces	
NaBr			Traces	
Insolubles	1 – 30%	0.1 – 1%	1 – 10%	

Why must salt for chloralkali manufacture be pure?

- Hydrogen evolution
- Membrane damage
- Incrustations
- Contaminated effluents

Brine Purification Process Ca and Mg Precipitation

Calcium precipitation $Ca^{++} + Na_2CO_3 = CaCO_3 + 2 Na^+$

40 108

Magnesium precipitation $Mg^{++} + 2 NaOH = \underline{Mg(OH)}_2 + 2 Na^+$

24 82

Salt Partners

Brine Purification ProcessSulphate Precipitation

With BaCO₃

 $SO4^{-} + BaCO_3 = BaSO_4 + CO_3^{-}$ 96 197 233

With BaCl₂

 $SO4^{-} + BaCl_2 = BaSO_4 + 2 Cl^{-}$ 96 208 233

With CaCl₂

 $SO4^{-} + CaCl_2 = CaSO_4 + 2 Cl^{-}$ 96 111 136

Salt Partners

Brine Purification Process

Overdosing of Chemical Reagents

For calcium precipitation

0.4 kg Na₂CO₃ per m3 of brine

For magnesium precipitation

0.15 kg NaOH per m3 of brine

For barium precipitation

5 - 6 kg sulphate per m3 of brine with

DuPont membranes

8 - 10 kg sulphate per m3 of brine with

Asahi Glass Flemion membranes

Salt Partners

Solar Salt of Variable Quality

saltworks in India producing salt of variable quality

One of the largest solar

SALT PARTNERS

Cost Components of Salt by Uses

Chloralkali and Soda Ash

Production Cost

Transport Cost

Brine Purification Cost

Other Uses
Production Cost
Transport Cost

Salt Partners Salt Prices are Dependent on Salt Purity

Industrial salt prices vary between USD 10.-/t and USD 100.-/t depending on salt purity

Salt Partners

Salt Purities

Rock salt
Crude sea salt
Upgraded sea salt
Refined salt
Super refined salt

NaCl Purity (%)

90 - 97

97 - 99

99 - 99.7

99.7 - 99.95

99.95 +

Cost Components of Brine Purification

- Brine Purification Chemicals
- Salt and Brine Handling
- Contaminated Sludge Disposal
- Purge Decontamination and Disposal
- Loss of Salt in Purge
- Investment and Operating Cost

Cost of Brine Purification Stoichiometrie

```
%Ca x 108 / 40 = %Na2CO3 x Price_{Na2CO3} = Cost_{CaStoch}
%Mg x 82 / 24 = %NaOH x Price_{NaOH} = Cost_{MgStoch}
%SO4 x 208 / 96 = %BaCl2 x Price_{BaCl2} = Cost_{SO4Stoch}
or BaCO3 or CaCl2 or purge
```

Cost of Brine Purification Overdosing

Ca: m3 Brine / t salt x 0.4 g/l Na₂CO₃ x Price_{Na2CO3} = Cost_{CaOverdose}

Mg: m3 Brine / t salt x 0.2 g/l NaOH x Price_{NaOH} = Cost_{MgOverdose}

SO₄: does not require overdosing but must be maintained within limits to reduce barium solubility

Typical Salt Analyses

	Ca	Mg	SO4	Insolubles
	%	%	%	%
Rock salt	1	0.05	2.5	2
Crude sea salt	0.2	0.1	0.6	1
Upgraded sea salt	0.04	0.02	0.12	0.03
Vacuum salt	0.001	0.0002	0.03	0.01

Cost of Brine Saturation and Salt Dissolution in Mercury and Membrane Electrolytic Brine

	Lean brine	Saturated brine	Salt dissolution	Ca in rock salt	Ca in crude sea salt
	(g NaCl/l)	(g NaCl/l)	(kg NaCl/m³)	(kg Ca/m³)	(kg Ca/m³)
Mercury brine	270	300	30	0.3	0.06
Membrane brine	150	300	150	1.5	0.3

Salt Partners

Contaminated Effluent Disposal from Mercury and Membrane Electrolytic Brine

Brine Effluent

Solids

Mercury brine Membrane brine

Demercurisation Neutralisation

Special depository (salt mines)

Desalination and land fill

Cost of Salt and Brine Treatment

Cost of salt / %NaCl content / 100 + Salt handling losses + Ca_{Sochio} + $Ca_{Overdose}$ + Mg_{Sochio} + $Mg_{Overdose}$ + $SO4_{Stochio}$ (or loss of salt with purge) + Alkalisation + Acidification + Regeneration + Effluent decontamination + Effluent disposal

Salt Partners

Disposal Cost of Brine and Solids

	Brine disposal cost	Solids disposal cost	
	(USD / t of salt)	(USD / t of salt)	
Minimum	0.05	0.20	
Average	0.30	1.50	
Maximum	0.60	4	

Cost of Salt and Brine Treatment

	Cost of brine treatment and disposal	Cost of salt, brine treatment and disposal
	(USD / t salt)	(USD / t salt)
Minimum	1.50	10
Average	10	25
Maximum	30	50

Relative Brine Treatment Cost

	Cost of brine treatment as percentage of salt cost	Percentage of chloralkali production cost
	%	%
Minimum	100	3
Average	170	15
Maximum	300	40

Three saltworks areas that are critical to production of high quality solar sea salt

- Sea water pre-concentration area
- Solar salt crystallisation area
- Salt purification plant

What to do and what to avoid in the sea water pre-concentration area

- Increase concentration gradually, avoid back-mixing
- Prevent seepage
- Cultivate dark pre-concentration pond bottom
- Maintain clear brine
- Avoid calcium sulphate over-saturation
- Allow nutrients in brine to get consumed

Solar salt crystallisation area

- Employ crystallisers in series
- Drain 28.5°Bè brine
- Support growth of *Halobacterium* that colours the brine red
- Allow thick brine layer to avoid reflection of solar radiation
- Avoid organic matter that causes formation of small crystal agglomerates
- Harvest under level control to avoid salt contamination with insolubles

Salt Partners

Solar salt from poorly managed saltworks

Salt that looks like a crystal, but it is an agglomerate.

The agglomerate can be broken by hand.

Impurities are imbedded between the small crystal fragments.

The salt is not well upgradeable.

Salt Partners

Solar salt from well managed saltworks

Hard, clear crystal, impossible to break by hand.

Impurities are only on the crystal surface. The salt is very well upgradeable with low losses.

Salt Partners

BIOSAL Process Results

	Raw salt 1996 harvest	Raw salt 2006 harvest	Impurity reduced to
Ca	0.183	0.175	96%
Mg	0.527	0.097	18%
SO4	1.29	0.595	46%
Insolubles	0.04	0.02	50%

Quality improvement achieved by application of BIOSAL biological management techniques in South West African solar saltfields

Salt Partners

BIOSAL Process Results

	HYDROSAL upgradeability 1996	HYDROSAL upgradeability 2006	Impurity reduced to
Ca	0.070	0.032	46%
Mg	0.020	0.008	40%
SO4	0.200	0.101	51%
Insolubles	0.01	0.01	100%

Quality improvement achieved by application of BIOSAL biological management techniques in South West African solar saltfields

Salt upgradability test, NaCl content

SALEXPOR 15 t/h solar salt refining plant in Portugal

Vladimir M. Sedivy Salt Partners Ltd, Zurich, Switzerland

100 t/h industrial salt upgrading plant in Spain

40 t/h salt upgrading plant in Portugal producing purest industrial salt in Europe

		Performance test
Ca	ppm	0.6
Mg	ppm	0.2
SO4	ppm	44

Efficiency	97.4%
NaCl losses	3.9%

Why not turn your salt into gold?