# European salt and chloralkali industry – recent trends and outlook

**Vladimir M. Sedivy** MSc (Hons) Chem Eng, IMD President Salt Partners Ltd, Erlenbach ZH, Switzerland

#### **Salt Production World-wide**

| Salt type  | World production |  |  |
|------------|------------------|--|--|
| Solar salt | 120,000,000 t/y  |  |  |
| Rock salt  | 80,000,000 t/y   |  |  |
| Brines     | 100,000,000 t/y  |  |  |
| Total      | 300,000,000 t/y  |  |  |

#### **Salt Consumption World-wide**

| Salt user         | Salt consumption |
|-------------------|------------------|
| Chemical industry | 180,000,000 t/y  |
| Food              | 30,000,000 t/y   |
| De-icing          | 40,000,000 t/y   |
| Other             | 50,000,000 t/y   |
| Total             | 300,000,000 t/y  |

#### **World Bulk Salt Trade**



#### Flight over Australian Saltfields



GOOGLE EARTH

#### **Shark Bay Salt Stockpiles**



The Shark Bay stockpiles are 200m long and 60m wide. Their design capacity is 250'000 t. In 2009 they were less than half full.

#### **Shark Bay Salt Stockpiles**



In November 2016, viewed on Google Earth, the Shark Bay stockpiles were still less than half full.

#### Lake McLeod Salt Stockpile



At Lake McLeod, the stockpile next to the wash plant has a design capacity of 1'500'000 t. In 2009 it was about 12% full.

#### Lake McLeod Salt Stockpile



Also the Lake McLeod stockpile pictured in 2016 didn't show much change.

#### **Onslow Salt Stockpile**



Onslow stockpile was designed for 500'000 t of salt. On 2.2.2009, there was virtually no salt left. The picture shows the shipment of last salt from Onslow stockpile.

#### **Onslow Brine Pond No. 1**



Onslow brine pond one week after it was hit by the cyclone Dominic. The dikes were broken through at three locations. Brine was flowing out, to the sea. It took many months to restore full production.

#### **Onslow Salt Stockpile**



This Google Earth image from May 2016 shows Onslow stockpile about 25% full.

#### **Dampier Original Drying Stockpile**



At Dampier, the original drying stockpile was designed for up to 2'000'000 t. It is not being used any more. Harvested salt is hauled to the new washing plant near the sea shore.

#### Dampier Original Intermediate Stockpile



The two Dampier original intermediate stockpiles are now used to dry the salt washed in a new washing plant. They are 400 m long and 55 m wide. They can hold up to 500'000 t. In 2009 the pictured stock was estimated at about 170'000 t or 36% of design capacity.

#### **Dampier Original Intermediate Stockpile**



The Google Earth image from late 2016 shows Dampier intermediate stockpile almost empty.

#### **Dampier Shipping Stockpile**



Dampier shipping stockpile could hold more than 250'000 t. The picture from 2009 shows less than 100'000 t of salt ready for shipment.

#### **Dampier Shipping Stockpile**



This Google Earth image from May 2016 shows unchanged situation at the Dampier salt shipping stockpile.

#### **Port Headland Stockpiles**



Port Headland stockpiles are large enough to hold about 1'400'000 t. In February 2009, they were less than 60% full.

SALT PARTNERS

#### **Port Headland Stockpiles**



This Google Earth image from January 2016 shows Port Headland stockpile to be about 40% full.

#### Australian Salt Stockpiles in February 2009

| Salt Producer | Stockpile    | Stockpile Capacity | Salt on Stock | Percent Full |
|---------------|--------------|--------------------|---------------|--------------|
|               |              | (t)                | (t)           | (%)          |
| Shark Bay     |              | 275'000            | 133'000       | 48%          |
| Onslow        |              | 652'000            | 1'000         | 0%           |
| McLeod        | Drying       | 1'520'000          | 180'000       | 12%          |
|               | Shipping     | 267'000            | 7'000         | 3%           |
| Dampier       | Drying       | 1'896'000          | 0             | 0%           |
|               | Intermediate | 475'000            | 169'000       | 36%          |
|               | Shipping     | 264'000            | 96'000        | 36%          |
| Port Headland | Drying       | 999'000            | 567'000       | 57%          |
|               | Shipping     | 384'000            | 199'000       | 52%          |
| Total         |              | 6'732'000          | 1'352'000     | 20%          |

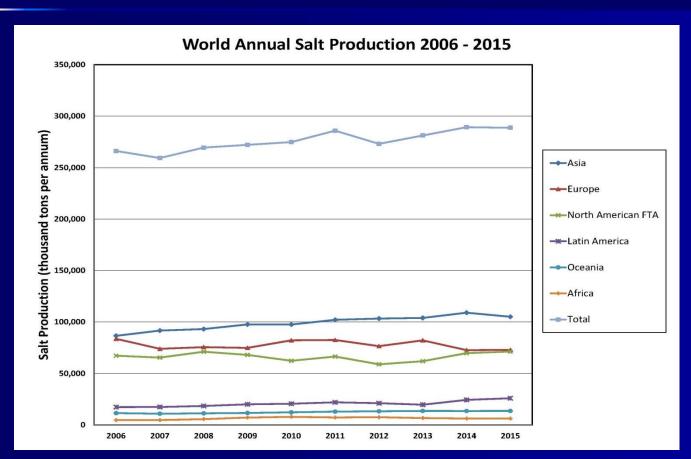
## **Australian Salt Production Capacity** and Design Stockpiling Capacity

| Salt Producer | Production Capacity | Stockpiling Capacity | Percent |
|---------------|---------------------|----------------------|---------|
|               | (t/y)               | (t)                  | (%)     |
| Shark Bay     | 2'200'000           | 275'000              | 13%     |
| Onslow        | 2'500'000           | 653'000              | 26%     |
| McLeod        | 2'300'000           | 1'787'000            | 78%     |
| Dampier       | 4'000'000           | 2'635'000            | 66%     |
| Port Headland | 3'500'000           | 1'384'000            | 40%     |
| Total         | 14'500'000          | 6'734'000            | 46%     |

## **Australian Salt Production Capacity and Salt on Stockpile**

| Salt Producer | Production Capacity | Salt on Stockpile | Percent |
|---------------|---------------------|-------------------|---------|
|               | (t/y)               | (t)               | (%)     |
| Shark Bay     | 2'200'000           | 133'000           | 6%      |
| Onslow        | 2'500'000           | 1'000             | 0%      |
| McLeod        | 2'300'000           | 187'000           | 8%      |
| Dampier       | 4'000'000           | 264'000           | 7%      |
| Port Headland | 3'500'000           | 765'000           | 2%      |
| Total         | 14'500'000          | 1'352'000         | 9%      |

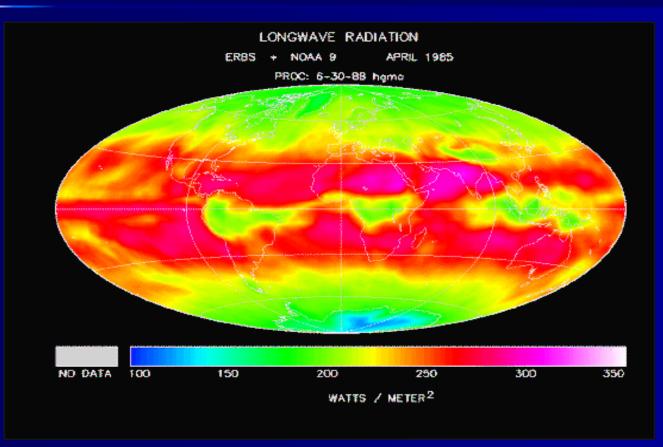
#### **World Salt Production 2006 - 2015**


| Continent          | Production in 2006 | Production in 2015 | Total<br>change | Annual<br>Change |
|--------------------|--------------------|--------------------|-----------------|------------------|
|                    | (t/y)              | (t/y)              | (%)             | (%)              |
| Asia               | 86'563'000         | 105'084'000        | 21              | 2.2              |
| Europe             | 83'636'000         | 72'896'000         | -13             | - 1.5            |
| North American FTA | 67'228'000         | 71'267'000         | 6               | 0.7              |
| Latin America      | 17'289'000         | 25'881'000         | 50              | 4.6              |
| Oceania            | 11'447'000         | 13'565'000         | 19              | 1.9              |
| Africa             | 4'691'000          | 6'169'000          | 189             | 12.5             |
| Total              | 266'162'000        | 288'693'000        | 8.5             | 0.9              |

Sources: Roskill, BGS, USGS and national sources

## **Vladimir M. Sedivy** Salt Partners Ltd, Erlenbach ZH, Switzerland

#### **Salt Partners**

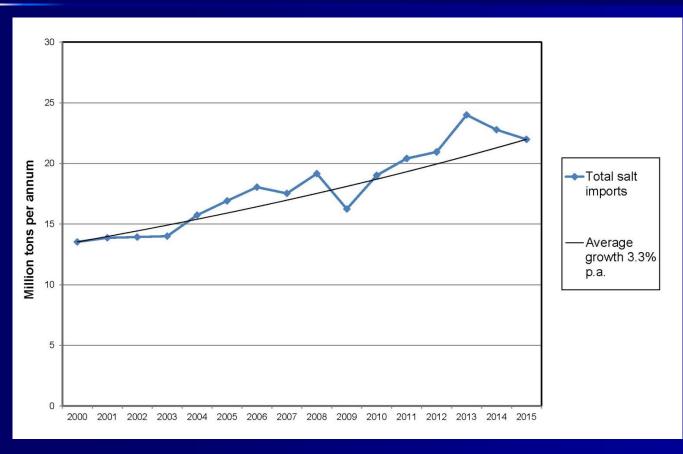

#### **World Salt Production 2006 - 2015**



Since 2006, world salt production has risen by 22.5 million tonnes, equal to 8.5%, or equal to 0.9% per annum. Most of the growth comes from Asia (18.5Mt), followed by Africa (8.9Mt) and Latin America (8.6Mt). Salt production in Europe has fallen by 10.7 million tonnes in the past 10 years.

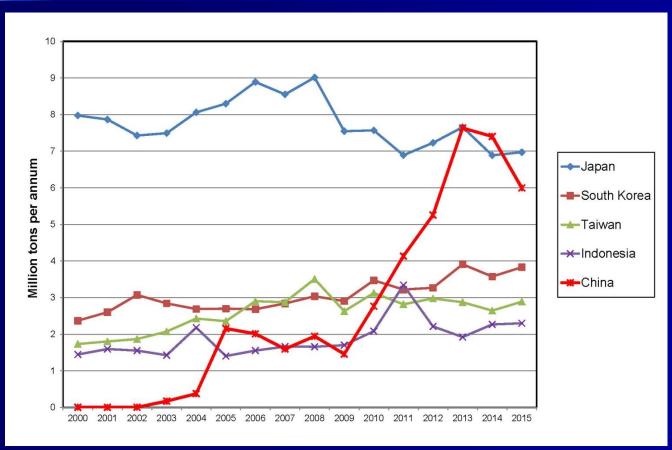
Sources: Roskill, BGS, USGS and national sources

#### **Solar Energy on the Planet Earth**



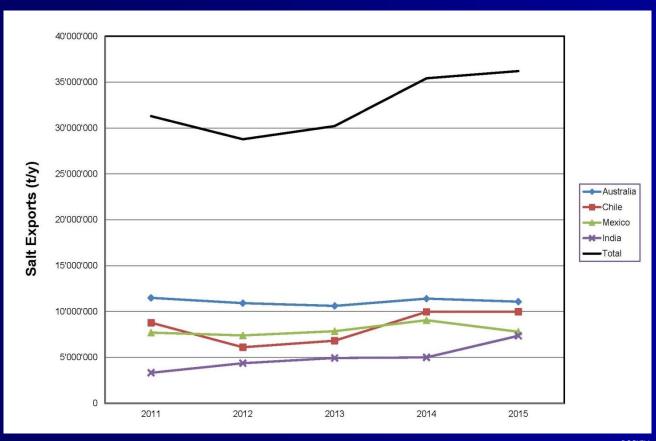

Locations with highest rates of evaporation, suitable for solar salt production:

Caribbean Sea
North Africa
South Africa
Middle East
Western India
Western Australia


In China, the Gulf of Bohai receives only half the solar energy available at the most suitable locations.

#### **Total Salt Imports in Asia-Pacific**



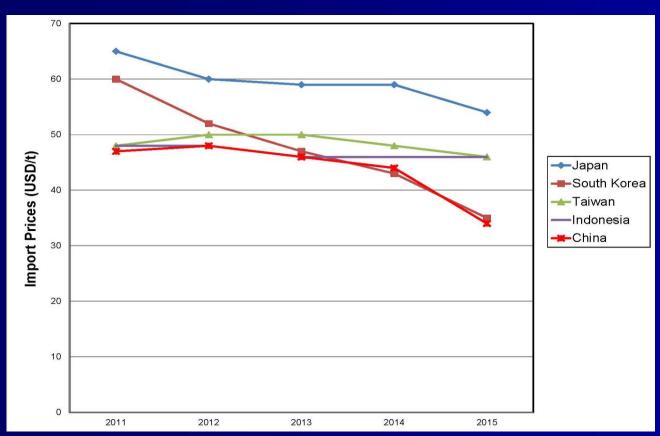

Since 2000, salt imports of 5 largest salt importers in Asia Pacific region have risen by 8.5 million tonnes, equal to 62%, or equal to 3.3% per annum.

#### **Largest Salt Imports in Asia-Pacific**



Salt imports of the five largest salt importers in Asia Pacific region.
Since 2000, these countries have increased their salt imports by average 3.3% per annum.

#### Salt Exports in Asia-Pacific




Since 2011, salt exports of 4 largest exporters in Asia Pacific region have increased by 5 million tons, or by 16% equal to 3.7% per annum.

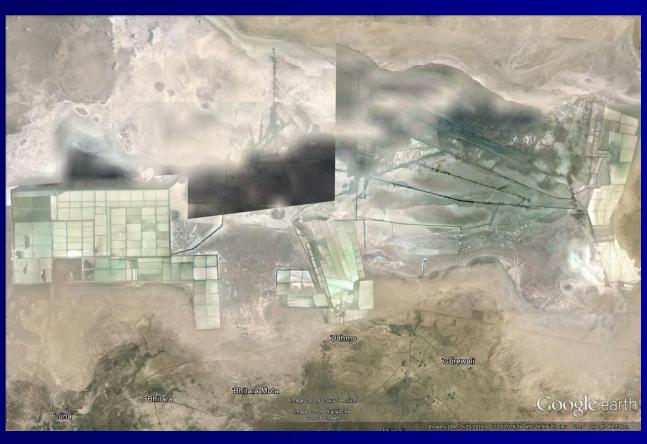
However, India increased exports by 4 million tons, or by 120% equal to 22% per annum.

ROSKILL

#### **Salt Import Prices in Asia-Pacific**



Since 2011, salt import prices of 5 largest importers in Asia Pacific region have dropped by USD 11 / ton, equal to 20%, or to 5.5% per annum.


ROSKILL

#### **New Developments in India**



New developments are taking place in the Indian solar salt sector in the hot and arid state of Gujarat.

#### **New Indian Solar Saltworks**



This Google Earth image from May 2016 shows new Indian solar saltworks on the border to Pakistan.

#### **Jakhau Solar Saltworks**



Jakhau solar saltworks and salt export terminal.

#### **Jakhau Salt Export Terminal**



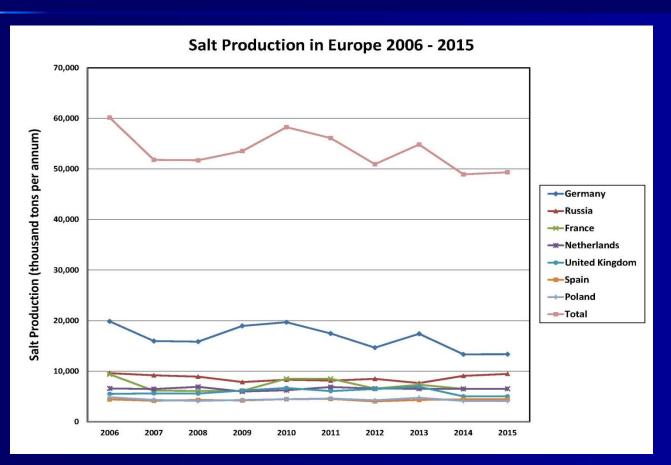
The Jakhau salt export terminal is located near shallow waters. Barges transport the salt to the Handysize vessels in the open sea.

#### **Salt Partners Supply Salt Harvesters**



Durrant salt harvester type 590-95, one of several machines supplied to Indian solar salt producers.

Salt Partners are proud to have participated in the success story of growing Indian salt exports.


BOY DUBBAN

#### Salt Production in 7 European Countries 2006 - 2015

| Country        | Production in 2006 | Production in 2015 | Total<br>change | Annual<br>Change |
|----------------|--------------------|--------------------|-----------------|------------------|
|                | (t/y)              | (t/y)              | (%)             | (%)              |
| Germany        | 19'846'000         | 13'350'000         | -33             | -4.3             |
| Russia         | 9'549'000          | 9'461'000          | -1.5            | -0.17            |
| France         | 9'371'000          | 6'500'000          | -31             | -4               |
| Netherlands    | 6'578'000          | 6'500'000          | -1.2            | -0.13            |
| United Kingdom | 5'499'000          | 5'000'000          | -9              | -1.1             |
| Spain          | 4'406'000          | 4'425'000          | +13             | +1.4             |
| Poland         | 4'837'000          | 4'100'000          | -15             | -1.8             |
| Total          | 60'131'000         | 49'326'000         | -18             | -2.2             |

Sources: Roskill, BGS, USGS and national sources

#### Salt Production in 7 European Countries 2006 - 2015

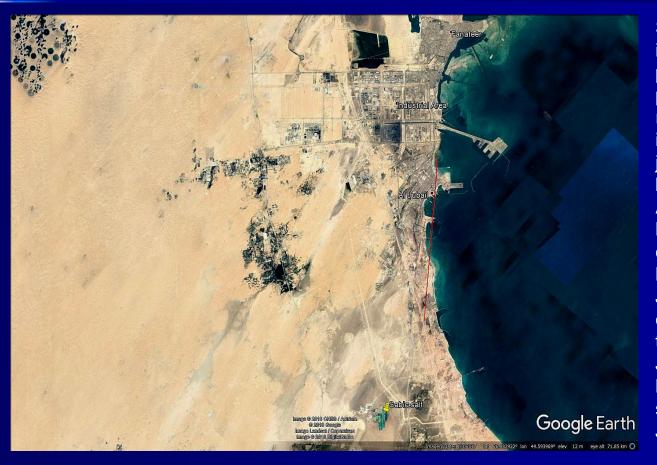


Since 2006, salt production in 7 largest European salt producing countries has fallen by 10.8 million tonnes. equal to -18%, or equal to 2.2% per annum. Most of the production loss comes from Germany (-6.5Mt) followed by France (-2.9Mt) and Poland (-0.7Mt)

Sources: Roskill, BGS, USGS and national sources

#### **Middle East**




Middle East countries have not only the highest insolation for production of solar salt but also the most abundant sources of natural hydrocarbons needed for production of petrochemicals, organic intermediates, plastics, etc.

#### ME petrochemical development projects



Some of the most spectacular petrochemical projects are being implemented in the Middle East, for example the Sadara Chemicals, a joint venture between Dow and Saudi Aramco, who invest 20 billion US dollars to produce 26 high value chemicals and plastics from natural hydrocarbons and salt. Salt Partners supplied the salt plant.

#### Salt source for Al-Jubail industrial cities



Sadara Chemicals is the last of several petrochemical plants and oil refineries implemented as joint ventures between Saudi Aramco and world leading chemical companies. The are located in the Al-Jubail industrial cities. They source their salt from the Juaymah sabkha located about 40 km south east of Al-Jubail.

#### **AI-Jubail Industrial Cities**



Al-Jubail Industrial Cities constructed in the past cover an area of approx. 10 x 15 km. they avail of their own deep sea terminal. The new industrial city area on the left is about 30% larger.

#### Sadara plant site



Sadara site is approx. 2.5 x 2.5 km or more than 6 km2. including contractor's camps on the left it is about double the size.

#### Sadara ethylene cracker



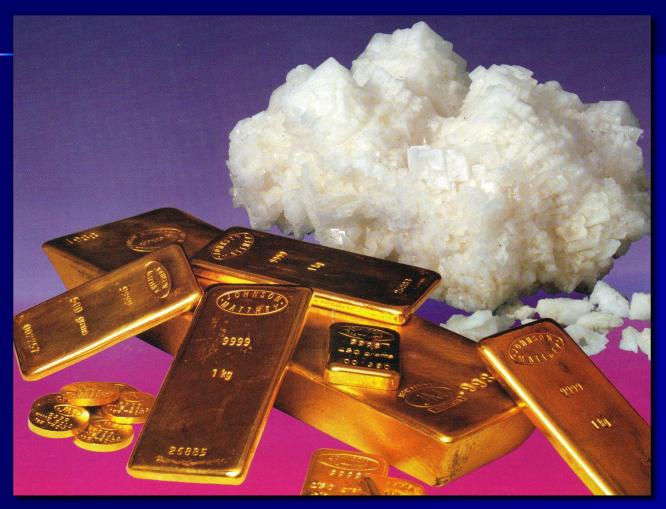
Source: Arab News, August 29, 2016

Sadara ethylene cracker consists of 12 furnaces. Of these 7 will crack natural gas and 5 will crack naphtha. 3 of those can also crack natural gas.

#### Salt mining at Juaymah sabkha



Salt is present in the Juaymah sabkha as a layer several meters thick covered by a layer of wind borne dust. After removing the top layer, salt is harvested from below the brine by dredgers.


#### Conclusion

## Salt production is moving from Europe to the Middle East Asia-Pacific and South America because:

- Petrochemical industry in Europe is stagnating / declining
- Land, raw materials and energy are abundant there
- Capital and technology are transferrable
- Government policies are industry friendly there

Europe has more chance in highly developed, sophisticated business areas than in commodities.

#### Why not turn your salt into gold?

